The Fragmentation of Psychological Science

The phenomenon of repackaging old ideas, as seen across different eras in psychology (but exists in every discipline), raises questions about the practices of pop psychologists like (dare I suggest) Brené Brown, who often employs grounded theory—a methodology typically reserved for less understood phenomena—to restate established concepts under the guise of novelty. For example, Brown's claim of inventing the idea that individuals adapt their identities within group settings restates theories already well-explored by Smith and Berg in the late '90s, illustrating a tendency among some in the field to "invent" rather than build on existing knowledge. This practice not only misrepresents the originality of an idea but also contributes to the unnecessary fragmentation of psychological science. We must become more discerning. https://lnkd.in/g3BwXRAF

The excessive creation of new constructs and measures leads to fragmentation, complicating the generation of insights and creating barriers to knowledge transfer. This fragmentation makes it difficult to compare results across experiments, limiting the development of a cohesive understanding of phenomena and impeding progress.

To address the challenges of fragmentation, there needs to be a shift toward greater hashtag#methodologicalrigor. We must improve, reuse, and validate existing constructs and hashtag#measures rather than continuously inventing new ones. This approach would make applying insights effectively in hashtag#decisionmaking processes easier and foster a more standardized and accessible body of knowledge.

🎯THERE IS A BETTER WAY
Improve methodological rigor and data quality processes. Apply operational excellence. Leverage data quality and senior stakeholder management to streamline data transformation processes. For example, by identifying and eliminating redundancies in data collection and processing, data-driven decisions' timeliness significantly improves and becomes more accurate.

Key Performance Indicators (KPIs) include efficiency, productivity, and quality outcomes. Focusing on DQ and meta data management and developing or refining KPIs that accurately track the performance of data transformation processes can ensure they align with organizational goals for operational excellence.

🎯WHY PRIOTIZE DQ KPIs?
They ensure accurate, reliable metrics for decision-making. High-quality data underpins effective KPIs, enabling organizations to track performance accurately and make informed strategic decisions, which is essential for operational excellence.

🎯WHY DOES STAKEHOLDER MANAGEMENT MATTER?
It nurtures beneficial relationships between a business and its stakeholders, creating shared value. It helps avoid or resolve conflicts, secure support, communicate effectively, and manage expectations, which is essential for operational excellence.

All Technology Projects are Data Projects

One of the biggest ideas in Driving Data Projects (the book) is that "all technology projects are data projects." Yet data is still an afterthought in many organizations—even with AI on the horizon (or now, in many firms' backyards).

Author of Data Quality: The Field Guide, Tom Redman, popularized the idea that the most important moments in a piece of data's lifetime are the moment it is created and the moment it is used. These moments often occur outside of IT. The business consumes vast amounts of data, emphasizing the importance of business involvement in data quality management. Those who have provisioned and consumed data know from experience that bad data dies hard. It will get rid of you if you don't get rid of it.

Read More

Business and Technology Strategy Must Learn to Harmonize

The buzz around data and artificial intelligence (AI) often overshadows a fundamental truth: the core of any successful endeavor remains distinctly human. As businesses navigate the complexities of the digital age, the importance of human insight, empathy, and value-driven strategies becomes increasingly evident.

Read More

Transparency and Explainability Don't Equal Trust

Trust is transitioning from institutional to "distributed," shifting authority from leaders to peers, which is often overlooked and perpetuates trust issues. If trust is predictable, it isn’t needed – is it? If the inner workings of AI, government, and the media were just more transparent, if we knew how they worked, we think we wouldn’t really need to “trust” so much. It would be more predictable.

Read More

To code or not to code? The value of Domain Knowledge in Data Teams

A little while ago, I chatted with Gartner Analyst David Pidsely about a trend I noticed in the job market. It seemed the last 2-3 years, data strategy and governance roles suddenly required coding experience.

It wasn’t my imagination, he confirmed. In 2023, skills and talent shortage were the number one inhibitor to CDAO success. Hiring managers and recruiters have been packing job descriptions with coding skills that don’t always require them.

Read More

6 Myths and Misconceptions about Data Projects

As I considered how to promote my new book on driving data projects, I wanted to include myths and misconceptions that reinforce their value. I have experienced many of these in teams I’ve worked on or with. Data projects are not a static set of routines. It's a constantly evolving, open-to-innovation process.

Only 54 percent of organizations fully understand the value of project management, according to PMI's Pulse of the Profession™ report. That might explain, in part, why project success rates are so low: Less than two-thirds meet their original business intents.

Read More